Q99358 · Q99358_9HIV1
- ProteinProtein Rev
- Generev
- StatusUniProtKB unreviewed (TrEMBL)
- Organism
- Amino acids201 (go to sequence)
- Protein existenceEvidence at transcript level
- Annotation score3/5
Function
function
Escorts unspliced or incompletely spliced viral pre-mRNAs (late transcripts) out of the nucleus of infected cells. These pre-mRNAs carry a recognition sequence called Rev responsive element (RRE) located in the env gene, that is not present in fully spliced viral mRNAs (early transcripts). This function is essential since most viral proteins are translated from unspliced or partially spliced pre-mRNAs which cannot exit the nucleus by the pathway used by fully processed cellular mRNAs. Rev itself is translated from a fully spliced mRNA that readily exits the nucleus. Rev's nuclear localization signal (NLS) binds directly to KPNB1/Importin beta-1 without previous binding to KPNA1/Importin alpha-1. KPNB1 binds to the GDP bound form of RAN (Ran-GDP) and targets Rev to the nucleus. In the nucleus, the conversion from Ran-GDP to Ran-GTP dissociates Rev from KPNB1 and allows Rev's binding to the RRE in viral pre-mRNAs. Rev multimerization on the RRE via cooperative assembly exposes its nuclear export signal (NES) to the surface. Rev can then form a complex with XPO1/CRM1 and Ran-GTP, leading to nuclear export of the complex. Conversion from Ran-GTP to Ran-GDP mediates dissociation of the Rev/RRE/XPO1/RAN complex, so that Rev can return to the nucleus for a subsequent round of export. Beside KPNB1, also seems to interact with TNPO1/Transportin-1, RANBP5/IPO5 and IPO7/RANBP7 for nuclear import. The nucleoporin-like HRB/RIP is an essential cofactor that probably indirectly interacts with Rev to release HIV RNAs from the perinuclear region to the cytoplasm.
Miscellaneous
HIV-1 lineages are divided in three main groups, M (for Major), O (for Outlier), and N (for New, or Non-M, Non-O). The vast majority of strains found worldwide belong to the group M. Group O seems to be endemic to and largely confined to Cameroon and neighboring countries in West Central Africa, where these viruses represent a small minority of HIV-1 strains. The group N is represented by a limited number of isolates from Cameroonian persons. The group M is further subdivided in 9 clades or subtypes (A to D, F to H, J and K).
GO annotations
Aspect | Term | |
---|---|---|
Cellular Component | host cell cytoplasm | |
Cellular Component | host cell nucleolus | |
Molecular Function | DNA-binding transcription factor activity | |
Molecular Function | RNA binding | |
Molecular Function | RNA-binding transcription regulator activity | |
Biological Process | mRNA transport | |
Biological Process | positive regulation of viral transcription | |
Biological Process | viral process |
Keywords
- Molecular function
- Biological process
Names & Taxonomy
Protein names
- Recommended nameProtein Rev
- Alternative names
Gene names
Organism names
- Organism
- Taxonomic lineageViruses > Riboviria > Pararnavirae > Artverviricota > Revtraviricetes > Ortervirales > Retroviridae > Orthoretrovirinae > Lentivirus
- Virus hosts
Accessions
- Primary accessionQ99358
Subcellular Location
UniProt Annotation
GO Annotation
Note: The presence of both nuclear import and nuclear export signals leads to continuous shuttling between the nucleus and cytoplasm.
Keywords
- Cellular component
PTM/Processing
Features
Showing features for modified residue.
Type | ID | Position(s) | Description | |||
---|---|---|---|---|---|---|
Modified residue | 177 | Phosphoserine; by host | ||||
Sequence: S | ||||||
Modified residue | 184 | Phosphoserine; by host | ||||
Sequence: S |
Post-translational modification
Asymmetrically arginine dimethylated at one site by host PRMT6. Methylation impairs the RNA-binding activity and export of viral RNA from the nucleus to the cytoplasm.
Phosphorylated by protein kinase CK2. Presence of, and maybe binding to the N-terminus of the regulatory beta subunit of CK2 is necessary for CK2-mediated Rev's phosphorylation.
Keywords
- PTM
Interaction
Subunit
Homomultimer; when bound to the RRE. Multimeric assembly is essential for activity and may involve XPO1. Binds to human KPNB1, XPO1, TNPO1, RANBP5 and IPO7. Interacts with the viral Integrase. Interacts with human KHDRBS1. Interacts with human NAP1; this interaction decreases Rev multimerization and stimulates its activity. Interacts with human DEAD-box helicases DDX3 and DDX24; these interactions may serve for viral RNA export to the cytoplasm and packaging, respectively. Interacts with human PSIP1; this interaction may inhibit HIV-1 DNA integration by promoting dissociation of the Integrase-LEDGF/p75 complex.
Structure
Family & Domains
Features
Showing features for region, motif.
Type | ID | Position(s) | Description | |||
---|---|---|---|---|---|---|
Region | 48-70 | Disordered | ||||
Sequence: GRKKRRQRRRAHQNSQTHQASLS | ||||||
Region | 103-111 | Homomultimerization | ||||
Sequence: FNISTSIRD | ||||||
Region | 105-134 | Disordered | ||||
Sequence: ISTSIRDPPPNPEGTRQARRNRRRRWRERQ | ||||||
Motif | 119-135 | Nuclear localization signal and RNA-binding (RRE) | ||||
Sequence: TRQARRNRRRRWRERQR | ||||||
Motif | 158-169 | Nuclear export signal and binding to XPO1 | ||||
Sequence: LQLPPLERLTLD | ||||||
Region | 177-201 | Disordered | ||||
Sequence: SGTQGVGSPQILVESPTVLESGTKE |
Domain
The RNA-binding motif binds to the RRE, a 240 bp stem-and-loop structure present in incompletely spliced viral pre-mRNAs. This region also contains the NLS which mediates nuclear localization via KPNB1 binding and, when the N-terminal sequence is present, nucleolar targeting. These overlapping functions prevent Rev bound to RRE from undesirable return to the nucleus. When Rev binds the RRE, the NLS becomes masked while the NES remains accessible. The leucine-rich NES mediates binding to human XPO1.
Sequence similarities
Belongs to the HIV-1 REV protein family.
Belongs to the lentiviruses Tat family.
Family and domain databases
Sequence
- Sequence statusComplete
- Length201
- Mass (Da)22,842
- Last updated1996-11-01 v1
- Checksum1BDD60A70F191474