High-efficiency full-length cDNA cloning.Carninci P., Hayashizaki Y.Cited forNUCLEOTIDE SEQUENCEStrainC57BL/6JTissueEyeballCategoriesSequencesSourceUniProtKB unreviewed (TrEMBL)PubMedEurope PMCMethods Enzymol 303:19-44 (1999)Cited in99+Mapped to15
Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes.Carninci P., Shibata Y., Hayatsu N., Sugahara Y., Shibata K., Itoh M., Konno H., Okazaki Y., Muramatsu M., Hayashizaki Y.View abstractCited forNUCLEOTIDE SEQUENCEStrainC57BL/6JTissueEyeballCategoriesSequencesSourceUniProtKB unreviewed (TrEMBL)PubMedEurope PMCGenome Res. 10:1617-1630 (2000)Cited in199+Mapped to10
RIKEN integrated sequence analysis (RISA) system--384-format sequencing pipeline with 384 multicapillary sequencer.Shibata K., Itoh M., Aizawa K., Nagaoka S., Sasaki N., Carninci P., Konno H., Akiyama J., Nishi K.[...], Togawa Y.View abstractCited forNUCLEOTIDE SEQUENCEStrainC57BL/6JTissueEyeballCategoriesSequencesSourceUniProtKB unreviewed (TrEMBL)PubMedEurope PMCGenome Res 10:1757-1771 (2000)Cited in99+
Functional annotation of a full-length mouse cDNA collection.Kawai J., Shinagawa A., Shibata K., Yoshino M., Itoh M., Ishii Y., Arakawa T., Hara A., Fukunishi Y.[...], Hayashizaki Y.View abstractCited forNUCLEOTIDE SEQUENCEStrainC57BL/6JTissueEyeballCategoriesSequencesSourceUniProtKB unreviewed (TrEMBL)PubMedEurope PMCNature 409:685-690 (2001)Cited in399+Mapped to99+
No title available.Adachi J., Aizawa K., Akimura T., Arakawa T., Bono H., Carninci P., Fukuda S., Furuno M., Hanagaki T.[...], Hayashizaki Y.Cited forNUCLEOTIDE SEQUENCEStrainC57BL/6JTissueEyeballCategoriesSequencesSourceUniProtKB unreviewed (TrEMBL)Submission Submitted to EMBL/GenBank/DDBJ databases (JUL-2001)Cited in299+
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs.Okazaki Y., Furuno M., Kasukawa T., Adachi J., Bono H., Kondo S., Nikaido I., Osato N., Saito R.[...], Hayashizaki Y.View abstractCited forNUCLEOTIDE SEQUENCEStrainC57BL/6JTissueEyeballCategoriesSequencesSourceUniProtKB unreviewed (TrEMBL)PubMedEurope PMCNature 420:563-573 (2002)Cited in699+Mapped to99+
The Transcriptional Landscape of the Mammalian Genome.The FANTOM Consortium, Riken Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group)Cited forNUCLEOTIDE SEQUENCEStrainC57BL/6JTissueEyeballCategoriesSequencesSourceUniProtKB unreviewed (TrEMBL)Science 309:1559-1563 (2005)Cited in199+
Antisense transcription in the mammalian transcriptome.FANTOM ConsortiumKatayama S., Tomaru Y., Kasukawa T., Waki K., Nakanishi M., Nakamura M., Nishida H., Yap C.C., Suzuki M.[...], Wahlestedt C.View abstractCited forNUCLEOTIDE SEQUENCEStrainC57BL/6JTissueEyeballCategoriesSequencesSourceUniProtKB unreviewed (TrEMBL)PubMedEurope PMCScience 309:1564-1566 (2005)Cited in99+
Mapping of new recessive cataract gene (lr2) in the mouse.Song C.W., Okumoto M., Mori N., Kim J.S., Han S.S., Esaki K.View abstractCategoriesSequencesSourceMGI: 2652871PubMedEurope PMCMamm Genome 8:927-931 (1997)Mapped to3
Hereditary cataract mouse with lens rupture: disputed priority.Hiai H.CategoriesFunctionSourceMGI: 2652871PubMedEurope PMCLab Anim 31:389-390 (1997)Mapped to3
A new hereditary cataract mouse with lens rupture.Song C.-W., Okumoto M., Mori N., Yamate J., Sakuma S., Kim J.-S., Han S.-S., Hilgers J., Esaki K.View abstractCategoriesSequences, Phenotypes & VariantsSourceMGI: 2652871PubMedEurope PMCLab. Anim. 31:248-253 (1997)Cited in1Mapped to2
Isolation and identification of the human homolog of a new p53-binding protein, Mdmx.Shvarts A., Bazuine M., Dekker P., Ramos Y.F.M., Steegenga W.T., Merckx G., van Ham R.C.A., van der Houven van Oordt W., van der Eb A.J., Jochemsen A.G.View abstractCategoriesSequencesSourceMGI: 2652871PubMedEurope PMCGenomics 43:34-42 (1997)Cited in1Mapped to10
Rupture of lens cataract: a novel hereditary recessive cataract model in the mouse.Iida F., Matsushima Y., Hiai H., Uga S., Honda Y.View abstractCategoriesSequencesSourceMGI: 2652871PubMedEurope PMCExp. Eye Res. 64:107-113 (1997)Cited in1Mapped to2
Mapping of rupture of lens cataract (rlc) on mouse chromosome 14.Matsushima Y., Kamoto T., Iida F., Abujiang P., Honda Y., Hiai H.CategoriesFunction, SequencesSourceMGI: 2652871PubMedEurope PMCGenomics 36:553-554 (1996)Mapped to3
Dock5 Deficiency Promotes Proteinuric Kidney Diseases via Modulating Podocyte Lipid Metabolism.Qu H., Liu X., Zhu J., Xiong X., Li L., He Q., Wang Y., Yang G., Zhang L.[...], Zheng H.View abstractAnnotationDock5 Deficiency Promotes Proteinuric Kidney Diseases via Modulating Podocyte Lipid Metabolism.CategoriesFunctionSourceGeneRif: 68813PubMedEurope PMCAdv Sci (Weinh) 11:e2306365-e2306365 (2024)Mapped to8
DOCK2 regulates MRGPRX2/B2-mediated mast cell degranulation and drug- induced anaphylaxis.Kunimura K., Akiyoshi S., Uruno T., Matsubara K., Sakata D., Morino K., Hirotani K., Fukui Y.View abstractCategoriesFunctionSourceMGI: 2652871PubMedEurope PMCJ Allergy Clin Immunol 151:1585-1594.e9 (2023)Mapped to14
Dedicator of Cytokinesis 5 Regulates Keratinocyte Function and Promotes Diabetic Wound Healing.Qu H., Miao T., Wang Y., Tan L., Huang B., Zhang L., Liu X., Long M., Zhang R.[...], Zheng Y.View abstractCategoriesFunction, ExpressionSourceMGI: 2652871PubMedEurope PMCDiabetes 70:1170-1184 (2021)Mapped to9
DOCK5 regulates energy balance and hepatic insulin sensitivity by targeting mTORC1 signaling.Lai Y., Zhao A., Tan M., Yang M., Lin Y., Li S., Song J., Zheng H., Zhu Z.[...], Yang G.View abstractAnnotationDOCK5 regulates energy balance and hepatic insulin sensitivity by targeting mTORC1 signaling.CategoriesFunctionSourceGeneRif: 68813, MGI: 2652871PubMedEurope PMCEMBO Rep 21:e49473-e49473 (2020)Mapped to24
Dock5 is a new regulator of microtubule dynamic instability in osteoclasts.Guimbal S., Morel A., Guerit D., Chardon M., Blangy A., Vives V.View abstractAnnotationThe authors show that Dock5 is as a new regulator of microtubule dynamic instability in osteoclast through Rac-dependent and -independent pathways.CategoriesFunction, InteractionSourceGeneRif: 68813PubMedEurope PMCBiol Cell 111:271-283 (2019)Mapped to3
Tensins are versatile regulators of Rho GTPase signalling and cell adhesion.Blangy A.View abstractAnnotationTensin3 is a versatile regulator of DOCK5 signaling and cell adhesion. (Review)CategoriesInteractionSourceGeneRif: 68813PubMedEurope PMCBiol Cell 109:115-126 (2017)Mapped to6
Tensin 3 is a new partner of Dock5 that controls osteoclast podosome organization and activity.Touaitahuata H., Morel A., Urbach S., Mateos-Langerak J., de Rossi S., Blangy A.View abstractAnnotationDock5 and tensin 3 cooperate for osteoclast activity to ensure the correct organization of podosomes.CategoriesInteractionSourceGeneRif: 68813, MGI: 2652871PubMedEurope PMCJ. Cell Sci. 129:3449-3461 (2016)Cited in4Mapped to15
Pharmacological inhibition of Dock5 prevents osteolysis by affecting osteoclast podosome organization while preserving bone formation.Vives V., Cres G., Richard C., Busson M., Ferrandez Y., Planson A.G., Zeghouf M., Cherfils J., Malaval L., Blangy A.View abstractCategoriesFunctionSourceMGI: 2652871PubMedEurope PMCNat Commun 6:6218-6218 (2015)Mapped to3
DOCK2 and DOCK5 act additively in neutrophils to regulate chemotaxis, superoxide production, and extracellular trap formation.Watanabe M., Terasawa M., Miyano K., Yanagihara T., Uruno T., Sanematsu F., Nishikimi A., Cote J.F., Sumimoto H., Fukui Y.View abstractAnnotationtogether with DOCK2 contributes to chemotaxis reactive oxygen species production and extracellular trap formationCategoriesFunctionSourceGeneRif: 68813PubMedEurope PMCJ Immunol 193:5660-5667 (2014)Mapped to3
The mineral dissolution function of osteoclasts is dispensable for hypertrophic cartilage degradation during long bone development and growth.Touaitahuata H., Cres G., de Rossi S., Vives V., Blangy A.View abstractCategoriesFunctionSourceMGI: 2652871PubMedEurope PMCDev Biol 393:57-70 (2014)Mapped to14
DOCK5 functions as a key signaling adaptor that links FcepsilonRI signals to microtubule dynamics during mast cell degranulation.Ogawa K., Tanaka Y., Uruno T., Duan X., Harada Y., Sanematsu F., Yamamura K., Terasawa M., Nishikimi A.[...], Fukui Y.View abstractAnnotationresults thus identify DOCK5 as a key signaling adaptor that orchestrates remodeling of the microtubule network essential for mast cell degranulation.CategoriesInteractionSourceGeneRif: 68813, MGI: 2652871PubMedEurope PMCJ Exp Med 211:1407-1419 (2014)Mapped to11