Functional equivalency between Otx2 and Otx1 in development of the rostral head.
Mice have two Otx genes, Otx1 and Otx2. Prior to gastrulation, Otx2 is expressed in the epiblast and visceral endoderm. As the primitive streak forms, Otx2 expression is restricted to the anterior parts of all three germ layers. Otx1 expression begins at the 1 to 3 somite stage in the anterior neuroectoderm. Otx2 is also expressed in cephalic mesenchyme. Otx2 homozygous mutants fail to develop structures anterior to rhombomere 3 (r3), and Otx2 heterozygotes exhibit craniofacial defects. Otx1 homozygous mutants do not show apparent defects in early brain development. In Otx1 and Otx2 double heterozygotes, rostral neuroectoderm is induced normally, but development of the mes/diencephalic domain is impaired starting at around the 3 to 6 somite stage, suggesting cooperative interactions between the two genes in brain regionalization. To determine whether Otx1 and Otx2 genes are functionally equivalent, we generated knock-in mice in which Otx2 was replaced by Otx1. In homozygous mutants, gastrulation occurred normally, and rostral neuroectoderm was induced at 7.5 days postcoitus (7.5 dpc), but the rostral brain failed to develop. Anterior structures such as eyes and the anterior neural ridge were lost by 8.5 dpc, but the isthmus and r1 and r2 were formed. In regionalization of the rostral neuroectoderm, the cooperative interaction of Otx2 with Otx1 revealed by the phenotype of Otx2 and Otx1 double heterozygotes was substitutable by Otx1. The otocephalic phenotype indicative of Otx2 haploinsufficiency was also largely restored by knocked-in Otx1. Thus most Otx2 functions were replaceable by Otx1, but the requirement for Otx2 in the anterior neuroectoderm prior to onset of Otx1 expression was not. These data indicate that Otx2 may have evolved new functions required for establishment of anterior neuroectoderm that Otx1 cannot perform.