Literature citations

RNA-binding proteins in mouse oocytes and embryos: expression of genes encoding Y box, DEAD box RNA helicase, and polyA binding proteins.

Growth and differentiation of early embryos depends almost entirely on information which is maternally inherited in the form of macromolecules accumulated by the female gamete during its growth phase. Most of the maternal mRNAs synthesized by growing oocytes are not immediately recruited onto polysomes but are stored as translationally dormant messenger ribonucleoprotein (mRNP) particles. mRNA binding proteins which have been associated with masked mRNP complexes in Xenopus oocytes fall into two main categories, those having affinity for a variety of RNA sequences (members of the Y box and DEAD box RNA helicase families) and those which interact more specifically with 3' polyA tails (the polyA binding proteins or PABPs). The objective of this study was to determine whether mouse oocytes and embryos express sequences encoding a Y box protein, (MSY1); on RNA helicase, (RCK/p54); and a universally expressed PABP and testis specific isoform (PABP1 and PABPt, respectively). RNAs were amplified by RT/PCR and the identities of targeted cDNAs were confirmed by restriction analysis and/or direct sequencing. Relative steady state levels and time courses of accumulation/decay were compared by Northern hybridization. All of the sequences are transcribed as maternal mRNAs. MSY1 transcripts accumulated during the growth phase appear to be degraded in parallel with the bulk of maternal mRNAs by the mid-late two-cell stage. RCK/p54 mRNAs are most abundant in growing oocytes; steady state levels decline in primary and secondary oocytes, and degradation appears to be complete by the mid-late two-cell stage. Zygotic transcription of MSY1 and RCK/p54 is evident in four-cell stage embryos. Most of the PABP1 message accumulated by growing oocytes decays during meiotic maturation with transcription resuming in two-cell embryos. PABPt is expressed at very low levels in oocytes and embryos. Based on the temporal patterns of expression and the reported activities of homologous sequences in other systems, we suggest that these RNA binding proteins may participate in the post- transcriptional regulation of gene expression during the period of maternal control of development in the mouse.

Related UniProtKB entries

Browse all 19 entries
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
FeedbackHelp