The Drosophila POLO kinase localises to multiple compartments of the mitotic apparatus and is required for the phosphorylation of MPM2 reactive epitopes.
The MPM2 antibody is a valuable tool for studying the regulation of mitotic events since it specifically recognises a subset of mitosis-specific phosphoproteins. Some MPM2 epitopes have been shown to be phosphorylated by p34(cdc2). However, recent results suggest that the newly emerging family of polo-like kinases (Plks) may also act as MPM2 kinases. In this study, we present evidence suggesting that the Drosophila POLO protein is required for the phosphorylation of MPM2 reactive epitopes. POLO displays a dynamic localisation pattern during mitosis, which parallels that of the MPM2 phosphoepitopes, since it is found in the centrosome and centromere from early prophase until late anaphase, the microtubule-overlapping region during anaphase, and the region on either side of the midbody during telophase. Centromere localisation is not dependent upon microtubules since it is retained in colchicine-arrested cells and is present in isolated chromosomes. Furthermore, the level of MPM2 immunoreactivity is directly correlated to the severity of the polo mutant alleles. In cells carrying a hypomorphic allele, the centrosomes of abnormal cells are small and fail to efficiently recruit MPM2 epitopes. In neuroblasts homozygous for a severe loss-of-function allele, the mitotic index is low and the MPM2 labelling is severely reduced or absent. Finally, rephosphorylation of MPM2 epitopes in detergent-extracted Schneider cells requires either POLO stably bound to the cytoskeletons or POLO present in soluble extracts. These results suggest that POLO is required for the phosphorylation of MPM2 epitopes in Drosophila, at the centrosomes, centromeres and the mitotic spindle, and thus might be involved in co-ordinating the mitotic changes of cellular architecture with the activity of the maturation promoting factor.