Ligand activation of ELK receptor tyrosine kinase promotes its association with Grb10 and Grb2 in vascular endothelial cells.
ELK is a member of the Eph-related tyrosine kinase family that includes receptors signaling axonal guidance, neuronal bundling, and angiogenesis. We recently identified ELK expression in human renal microvascular endothelial cells and sought to identify intracellular proteins through which it signals responses. The cytoplasmic domain of ELK was used as "bait" in a yeast two- hybrid screen to identify interactive proteins expressed from a randomly primed embryonic murine library (E9.5-10.5). Among interactive products of 76 cDNAs characterized, 10 nonidentical, overlapping clones encoded the SH2 domain of the recently reported Grb10 adapter protein, and an additional 3 encoded Grb2. A self-phosphorylated recombinant, baculovirus-expressed GST-ELKcy fusion protein bound Grb10 and Grb2 from human renal microvascular endothelial cell extracts, while the unphosphorylated fusion form did not. Site-directed mutation identified Tyr-929 as a putative phosphorylation site required for Grb10, but not Grb2, interaction in yeast and recombinant protein assays. The ELK ligand, LERK-2/Fc, stimulated tyrosine phosphorylation of ELK, and recruitment of Grb10 and Grb2 to endothelial ELK receptors recovered by wheat germ agglutinin lectin and immunoprecipitation. These findings define ligand-activated interaction between ELK and the SH2 domains of Grb2 and the newly identified Grb10 protein that shares homology with a Caenorhabditis elegans gene product implicated in neural cell migration.