High-resolution genetic map and YAC contig around the mouse neurological locus reeler.
Mutations at the recessive reeler locus (rl) on mouse Chromosome (Chr) 5 result in abnormal development of multiple central nervous system components, including the cerebral and cerebellar cortices. These abnormalities are characterized by highly disorganized laminar structures thought to have arisen from a post- migration failure of neuronal organization events that are probably mediated through cell-cell interactions. As a result of a mutagenesis scheme designed to generate visible recessive mutations induced by the drug chlorambucil, we had previously recovered a new allele of the reeler locus (rlAlb) that is likely to involve a deletion based on the known mechanisms of chlorambucil action. We have constructed a high-resolution genetic map from two intercrosses segregating this allele. Our first cross, in which the mutation was outcrossed to the 101 strain prior to intercrossing, consisted of 196 meioses and resulted in the positioning of four loci proximal to rl, with D5Mit1 being the closest (2.6 +/- 1.1 cM). The second cross consisted of intercrossing rl heterozygotes derived from an outcross to the C57BL/6 strain. A total of 318 mice (636 meioses) gave rise to a panel of 41 recombinants, which were used to map a total of 14 loci within a 6.4-cM interval bounded by D5Mit1 and the En-2 gene. A yeast artificial chromosome contig consisting of clones containing two of these loci, D5Mit72 (located 0.31 cM distal to rl), and D5Mit61 (no recombinants with rl), has been assembled and is being used to locate the rl gene.