BET protein-dependent E2F pathway activity confers bell-shaped type resistance to tankyrase inhibitors in APC-mutated colorectal cancer.
WNT/β-catenin signaling is aberrantly activated in colorectal cancer (CRC) mainly by loss-of-function mutations in adenomatous polyposis coli (APC) and is involved in tumor progression. Tankyrase inhibitors, which suppress WNT/β- catenin signaling, are currently in pre-clinical and clinical trials. However, the mechanisms of resistance to tankyrase inhibitors remain unclear. In this study, we established tankyrase inhibitor-resistant CRC cells, JC73-RK100, from APC-mutated patient-derived CRC cells. JC73-RK100 cells and several CRC cell lines were sensitive to tankyrase inhibitors at low concentrations but were resistant at high concentrations, showing an intrinsic/acquired bell-shaped dose response. Mechanistically, tankyrase inhibitors at high concentrations promoted BRD3/4-dependent E2F target gene transcription and over-activated cell cycle progression in these cells. BET inhibitors canceled the bell-shaped dose response to tankyrase inhibitors. Combination of tankyrase and BET inhibitors significantly suppressed tumor growth in a mouse xenograft model. These observations suggest that the combination of tankyrase and BET inhibitors may be a useful therapeutic approach to overcome the resistance of a subset of CRCs to tankyrase inhibitors.