Literature citations

hsa-miR-199b-3p suppresses osteosarcoma progression by targeting CCDC88A, inhibiting epithelial-to-mesenchymal transition, and Wnt/beta-catenin signaling pathway.

The present study investigated microRNA (miR)-199b-3p expression in osteosarcoma (OS) and aimed to identify its potential mechanism of action contributing to the development of this disease. Firstly, miR-199b-3p and coiled-coil domain containing 88A (CCDC88A) expression data were evaluated from Gene Expression Profiling Interactive Analysis and Kaplan Meier plotter was used to assess the survival data. By analyzing the GSE65071 dataset from gene expression omnibus, it was found that miR-199b-3p was expressed at a low level. By using reverse transcription-quantitative PCR analysis in OS cells and tissues, CCDC88A was found to be expressed at a high level. Moreover, TargetScan predicted CCDC88A to be a downstream target of miR-199b-3p. Luciferase reporter assays were used to verify this prediction. In vitro overexpression of miR-199b-3p decreased the invasive and proliferative activity of OS cells. Mechanistic studies indicated that decreased miR-199b-3p resulted in increased expression of CCDC88A. Concomitantly, it impeded the Wnt/beta-catenin pathway and the epithelial-to- mesenchymal transition process. Overall, the results of the present study emphasized the pivotal role of the miR-199b-3p in the formation and progression of OS, suggesting that it could be used as a potential tumor biomarker.

Related UniProtKB entries

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
FeedbackHelp