All-Atom Simulations Elucidate the Impact of U2AF2 Cancer-Associated Mutations on Pre-mRNA Recognition.
The U2AF2 splicing factor, made of two tandem RNA recognition motifs (RRMs) joined by a flexible linker, selects the intronic polypyrimidine sequence of premature mRNA, thus ensuring splicing fidelity. Increasing evidence links mutations of key splicing factors, including U2AF2, to a variety of cancers. Nevertheless, the impact of U2AF2 cancer-associated mutations on polypyrimidine recognition remains unclear. Here, we combined extensive (18 μs-long) all-atom molecular dynamics simulations and dynamical network theory analysis (NWA) of U2AF2, in its wild-type form and in the presence of the six most frequent cancer-associated mutations, bound to a poly-U strand. Our results reveal that the selected mutations affect the pre-mRNA binding at two hot spot regions, irrespectively of where these mutants are placed on the distinct U2AF2 domains. Complementarily, NWA traced the existence of cross-communication pathways, connecting each mutation site to these recognition hot spots, whose strength is altered by the mutations. Our outcomes suggest the existence of a structural/dynamical interplay of the two U2AF2's RRMs underlying the recognition of the polypyrimidine tract and reveal that the cancer-associated mutations affect the polypyrimidine selection by altering the RRMs' cooperativity. This mechanism may be shared by other RNA binding proteins hallmarked, like U2AF2, by multidomain architecture and high plasticity.