Stiffness-responsive feedback autoregulation of DDR1 expression is mediated by a DDR1-YAP/TAZ axis.
ObjectiveIncreased matrix stiffness is sensed by the collagen-binding receptor tyrosine kinase discoidin domain receptor 1 (DDR1). We have previously shown that DDR1 stimulates a positive feedback loop to increase its own expression in vascular smooth muscle cells (VSMCs). The transcriptional co- factors YAP/TAZ are stiffness sensing molecules that have not previously been investigated in DDR1 signaling. Here, we test the hypothesis that DDR1 signals through YAP/TAZ to auto-regulate its own expression.Approach and resultsWe used vascular smooth muscle cells (VSMCs) from wild-type and DDR1 knockout mice stimulated with collagen and/or substrates of different stiffness. We show that DDR1 controls YAP/TAZ nuclear localization and activity, whereas knockdown of YAP/TAZ attenuates DDR1 expression. In response to increased substrate stiffness, collagen stimulation, or RhoA activation, YAP/TAZ translocate to the nucleus and bind to chromatin. Finally, collagen stimulation promotes increased YAP/TAZ association with the Ddr1 promoter.ConclusionsThese findings reveal the mechanism by which DDR1 regulates YAP/TAZ activity which can then mediate positive feedback regulation of DDR1 expression by promoting transcription of the DDR1 gene.