Literature citations

Heme-dependent recognition of 5-aminolevulinate synthase by the human mitochondrial molecular chaperone ClpX.

The caseinolytic mitochondrial matrix peptidase chaperone subunit (ClpX) plays an important role in the heme-dependent regulation of 5-aminolevulinate synthase (ALAS1), a key enzyme in heme biosynthesis. However, the mechanisms underlying the role of ClpX in this process remain unclear. In this in vitro study, we confirmed the direct binding between ALAS1 and ClpX in a heme-dependent manner. The substitution of C108 P109 [CP motif 3 (CP3)] with A108 A109 in ALAS1 resulted in a loss of ability to bind ClpX. Computational disorder analyses revealed that CP3 was located in a potential intrinsically disordered protein region (IDPR). Thus, we propose that conditional disorder-to-order transitions in the IDPRs of ALAS1 may represent key mechanisms underlying the heme-dependent recognition of ALAS1 by ClpX.

Related UniProtKB entries

Browse all 41 entries
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
FeedbackHelp