Literature citations

The aryl hydrocarbon receptor promotes differentiation during mouse preimplantational embryo development.

Mammalian embryogenesis is a complex process controlled by transcription factors that regulate the balance between pluripotency and differentiation. Transcription factor aryl hydrocarbon receptor (AhR) regulates OCT4/POU5F1 and NANOG, both essential controllers of pluripotency, stemness and early embryo development. Molecular mechanisms controlling OCT4/POU5F1 and NANOG during embryogenesis remain unidentified. We show that AhR regulates pluripotency factors and maintains the metabolic activity required for proper embryo differentiation. AhR-lacking embryos (AhR-/-) showed a pluripotent phenotype characterized by a delayed expression of trophectoderm differentiation markers. Accordingly, central pluripotency factors OCT4/POU5F1 and NANOG were overexpressed in AhR-/- embryos at initial developmental stages. An altered intracellular localization of these factors was observed in the absence of AhR and, importantly, Oct4 had an opposite expression pattern with respect to AhR from the two-cell stage to blastocyst, suggesting a negative regulation of OCT4/POU5F by AhR. We propose that AhR is a regulator of pluripotency and differentiation in early mouse embryogenesis.

Related UniProtKB entries

Browse all 113 entries
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
FeedbackHelp