Literature citations

Smad4-dependent morphogenic signals control the maturation and axonal targeting of basal vomeronasal sensory neurons to the accessory olfactory bulb.

The vomeronasal organ (VNO) contains two main types of vomeronasal sensory neurons (VSNs) that express distinct vomeronasal receptor (VR) genes and localize to specific regions of the neuroepithelium. Morphogenic signals are crucial in defining neuronal identity and network formation; however, if and what signals control maturation and homeostasis of VSNs is largely unexplored. Here, we found transforming growth factor β (TGFβ) and bone morphogenetic protein (BMP) signal transduction in postnatal mice, with BMP signaling being restricted to basal VSNs and at the marginal zones of the VNO: the site of neurogenesis. Using different Smad4 conditional knockout mouse models, we disrupted canonical TGFβ/BMP signaling in either maturing basal VSNs (bVSNs) or all mature VSNs. Smad4 loss of function in immature bVSNs compromises dendritic knob formation, pheromone induced activation, correct glomeruli formation in the accessory olfactory bulb (AOB) and survival. However, Smad4 loss of function in all mature VSNs only compromises correct glomeruli formation in the posterior AOB. Our results indicate that Smad4-mediated signaling drives the functional maturation and connectivity of basal VSNs.

Related UniProtKB entries

Browse all 7 entries
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
FeedbackHelp