Literature citations

MicroRNA-6744-5p promotes anoikis in breast cancer and directly targets NAT1 enzyme.

Objective: Anoikis is apoptosis that is induced when cells detach from the extracellular matrix and neighboring cells. As anoikis serves as a regulatory barrier, cancer cells often acquire resistance towards anoikis during tumorigenesis to become metastatic. MicroRNAs (miRNAs) are short strand RNA molecules that regulate genes post-transcriptionally by binding to mRNAs and reducing the expression of its target genes. This study aimed to elucidate the role of a novel miRNA, miR-6744-5p, in regulating anoikis in breast cancer and identify its target gene. Methods: An anoikis resistant variant of the luminal A type breast cancer MCF-7 cell line (MCF-7-AR) was generated by selecting and amplifying surviving cells after repeated exposure to growth in suspension. MiRNA microarray analysis identified a list of dysregulated miRNAs from which miR-6744-5p was chosen for overexpression and knockdown studies in MCF-7. Additionally, the miRNA was also overexpressed in a triple-negative breast cancer cell line, MDA-MB-231, to evaluate its ability to impair the metastatic potential of breast cancer cells. Results: This study showed that overexpression and knockdown of miR-6744-5p in MCF-7 increased and decreased anoikis sensitivity, respectively. Similarly, overexpression of miR- 6744-5p in MDA-MB-231 increased anoikis and also decreased tumor cell invasion in vitro and in vivo. Furthermore, NAT1 enzyme was identified and validated as the direct target of miR-6744-5p. Conclusions: This study has proven the ability of miR-6744-5p to increase anoikis sensitivity in both luminal A and triple negative breast cancer cell lines, highlighting its therapeutic potential in treating breast cancer.

Related UniProtKB entries

Browse all 8 entries
This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our Privacy Notice.
Help