Myonectin Is an Exercise-Induced Myokine That Protects the Heart From Ischemia-Reperfusion Injury.
RationalePhysical exercise provides benefits for various organ systems, and some of systemic effects of exercise are mediated through modulation of muscle-derived secreted factors, also known as myokines. Myonectin/C1q (complement component 1q)/TNF (tumor necrosis factor)-related protein 15/erythroferrone is a myokine that is upregulated in skeletal muscle and blood by exercise.ObjectiveWe investigated the role of myonectin in myocardial ischemic injury.Methods and resultsIschemia-reperfusion in myonectin-knockout mice led to enhancement of myocardial infarct size, cardiac dysfunction, apoptosis, and proinflammatory gene expression compared with wild- type mice. Conversely, transgenic overexpression of myonectin in skeletal muscle reduced myocardial damage after ischemia-reperfusion. Treadmill exercise increased circulating myonectin levels in wild-type mice, and it reduced infarct size after ischemia-reperfusion in wild-type mice, but not in myonectin-knockout mice. Treatment of cultured cardiomyocytes with myonectin protein attenuated hypoxia/reoxygenation-induced apoptosis via S1P (sphingosine-1-phosphate)- dependent activation of cAMP/Akt cascades. Similarly, myonectin suppressed inflammatory response to lipopolysaccharide in cultured macrophages through the S1P/cAMP/Akt-dependent signaling pathway. Moreover, blockade of S1P-dependent pathway reversed myonectin-mediated reduction of myocardial infarct size in mice after ischemia-reperfusion.ConclusionsThese data indicate that myonectin functions as an endurance exercise-induced myokine which ameliorates acute myocardial ischemic injury by suppressing apoptosis and inflammation in the heart, suggesting that myonectin mediates some of the beneficial actions of exercise on cardiovascular health.