Literature citations

SCD1 and SCD2 Form a Complex That Functions with the Exocyst and RabE1 in Exocytosis and Cytokinesis.

Although exocytosis is critical for the proper trafficking of materials to the plasma membrane, relatively little is known about the mechanistic details of post-Golgi trafficking in plants. Here, we demonstrate that the DENN (Differentially Expressed in Normal and Neoplastic cells) domain protein STOMATAL CYTOKINESIS DEFECTIVE1 (SCD1) and SCD2 form a previously unknown protein complex, the SCD complex, that functionally interacts with subunits of the exocyst complex and the RabE1 family of GTPases in Arabidopsis thaliana Consistent with a role in post-Golgi trafficking, scd1 and scd2 mutants display defects in exocytosis and recycling of PIN2-GFP. Perturbation of exocytosis using the small molecule Endosidin2 results in growth inhibition and PIN2-GFP trafficking defects in scd1 and scd2 mutants. In addition to the exocyst, the SCD complex binds in a nucleotide state-specific manner with Sec4p/Rab8-related RabE1 GTPases and overexpression of wild-type RabE1 rescues scd1 temperature-sensitive mutants. Furthermore, SCD1 colocalizes with the exocyst subunit, SEC15B, and RabE1 at the cell plate and in distinct punctae at or near the plasma membrane. Our findings reveal a mechanism for plant exocytosis, through the identification and characterization of a protein interaction network that includes the SCD complex, RabE1, and the exocyst.

Related UniProtKB entries

Browse all 7 entries
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
Help