Literature citations

p38gamma mitogen-activated protein kinase (MAPK) confers breast cancer hormone sensitivity by switching estrogen receptor (ER) signaling from classical to nonclassical pathway via stimulating ER phosphorylation and c- Jun transcription.

Estrogen receptor (ER) α promotes breast cancer growth by regulating gene expression through classical estrogen response element (ERE) binding and nonclassical (interaction with c-Jun at AP-1 sites) pathways. ER is the target for anti-estrogens such as tamoxifen (TAM). However, the potential for classical versus nonclassical ER signaling to influence hormone sensitivity is not known. Moreover, anti-estrogens frequently activate several signaling cascades besides the target ER, and the implications of these "off-target" signaling events have not been explored. Here, we report that p38γ MAPK is selectively activated by treatment with TAM. This results in both phosphorylation of ER at Ser-118 and stimulation of c-Jun transcription, thus switching ER signaling from the classical to the nonclassical pathway leading to increased hormone sensitivity. Unexpectedly, phosphorylation at Ser-118 is required for ER to bind both p38γ and c-Jun, thereby promoting ER relocation from ERE to AP-1 promoter sites. Thus, ER/Ser-118 phosphorylation serves as a central mechanism by which p38γ regulates signaling transduction of ER with its inhibitor TAM.

Related UniProtKB entries

Browse all 93 entries
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
FeedbackHelp