Literature citations

Interaction of SH3P13 and DYDC1 protein: a germ cell component that regulates acrosome biogenesis during spermiogenesis.

The N-terminal BAR domain of endophilin has unique functions, such as affecting the curvature of the lipid membrane through its lysophosphatidic acid acyltransferase activity, binding of ATP and GTP and participating in tubulating activity. We recently demonstrated that SH3P13, a BAR domain-containing protein, assists in regulating clathrin-coated vesicle traffic that is crucial for acrosome biogenesis during spermatogenesis. DYDC1 was identified in a yeast two- hybrid screen from a human testis library by using the SH3P13 BAR domain as the bait. Consistent with the expression pattern of SH3P13, DYDC1 is exclusively expressed in the brain and testis and accumulates in the acrosome area during late stage of spermiogenesis. Here, we report that DYDC1 plays a crucial role during acrosome biogenesis. This relationship has been verified by a novel approach that involves germ cell transplantation and RNA interference. We found that knockdown of endogenous Dydc1 interfered with the formation of acrosomes, and thus spermatid differentiation during mouse spermiogenesis. These data provide important insight into the crucial process of acrosome biogenesis. In addition, our approach can also be applied to study functions of other genes related to spermatogenesis in vivo.

Related UniProtKB entries

Browse all 3 entries
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
FeedbackHelp