Essential maintenance is planned to begin on Fri Jan 24 2025. The website may be temporarily unavailable. Please use our fallback: https://wwwdev.ebi.ac.uk/uniprot/front-end/fallback/ in case of any outage.

Literature citations

Prediction and manipulation of the stereochemistry of enoylreduction in modular polyketide synthases.

When an enoylreductase enzyme of a modular polyketide synthase reduces a propionate extender unit that has been newly added to the growing polyketide chain, the resulting methyl branch may have either S or R configuration. We have uncovered a correlation between the presence or absence of a unique tyrosine residue in the ER active site and the chirality of the methyl branch that is introduced. When this position in the active site is occupied by a tyrosine residue, the methyl branch has S configuration, otherwise it has R configuration. In a model PKS in vivo, a mutation (Tyr to Val) in an erythromycin PKS-derived ER caused a switch in the methyl branch configuration in the product from S to R. In contrast, alteration (Val to Tyr) at this position in a rapamycin-derived PKS ER was insufficient to achieve a switch from R to S, showing that additional residues also participate in stereocontrol of enoylreduction.

Related UniProtKB entry

Browse 1 entry
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
Help