Literature citations

Identification of c-Src tyrosine kinase substrates using mass spectrometry and peptide microarrays.

c-Src tyrosine kinase plays a critical role in signal transduction downstream of growth factor receptors, integrins and G protein-coupled receptors. We used stable isotope labeling with amino acids in cell culture (SILAC) approach to identify additional substrates of c-Src tyrosine kinase in human embryonic kidney 293T cells. We have identified 10 known substrates and interactors of c- Src and Src family kinases along with 26 novel substrates. We have experimentally validated 4 of the novel proteins (NICE-4, RNA binding motif 10, FUSE-binding protein 1 and TRK-fused gene) as direct substrates of c-Src using in vitro kinase assays and cotransfection experiments. Significantly, using a c- Src specific inhibitor, we were also able to implicate 3 novel substrates (RNA binding motif 10, EWS1 and Bcl-2 associated transcription factor) in PDGF signaling. Finally, to identify the exact tyrosine residues that are phosphorylated by c-Src on the novel c-Src substrates, we designed custom peptide microarrays containing all possible tyrosine-containing peptides (312 unique peptides) and their mutant counterparts containing a Tyr --> Phe substitution from 14 of the identified substrates. Using this platform, we identified 34 peptides that are phosphorylated by c-Src. We have demonstrated that SILAC-based quantitative proteomics approach is suitable for identification of substrates of nonreceptor tyrosine kinases and can be coupled with peptide microarrays for high-throughput identification of substrate phosphopeptides.

Related UniProtKB entries

Browse all 18 entries
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
FeedbackHelp