Literature citations

Residual levels of tripeptidyl-peptidase I activity dramatically ameliorate disease in late-infantile neuronal ceroid lipofuscinosis.

Classical late-infantile neuronal ceroid lipofuscinosis (LINCL) is a hereditary neurodegenerative disease of childhood that is caused by mutations in the gene (CLN2) encoding the lysosomal protease tripeptidyl-peptidase I (TPPI). LINCL is fatal and there is no treatment of demonstrated efficacy in affected children but preclinical studies with AAV-mediated gene therapy have demonstrated promise in a mouse model. Here, we have generated mouse CLN2-mutants that express different amounts of TPPI activity to benchmark levels required for therapeutic benefits. Approximately 3% of normal TPPI activity in brain delayed disease onset and doubled lifespan to a median of approximately 9 months compared to mice expressing approximately 0.2% of normal levels. Expression of 6% of normal TPPI activity dramatically attenuated disease, with a median lifespan of approximately 20 months which approaches that of unaffected mice. While the lifespan of this hypomorph is shortened, disease is late-onset, less severe and progresses slowly compared to mice expressing lower TPPI levels. For gene therapy and other approaches that restore enzyme activity, these results suggest that 6% of normal TPPI activity throughout the CNS of affected individuals will provide a significant therapeutic benefit but higher levels will be required to cure this disease.

Related UniProtKB entries

Browse all 5 entries
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
FeedbackHelp