Strong induction of the Tis11B gene in myogenic differentiation.
TIS11B is a zinc-finger protein of the tristetraprolin (TTP) family. Using cDNA microarray analysis, we could identify the Tis11B gene based on its differential expression in myogenesis. Here, we demonstrate that expression of the Tis11B gene is strongly induced during differentiation of the murine myoblast cell line C2C12. By contrast, expression of Ttp itself was not induced in myogenesis. Pretreatment of the cells with the translation inhibitor cycloheximide demonstrated that Tis11B was a primary response gene in this process. In addition, pretreatment with the transcription inhibitor actinomycin D demonstrated that gene expression was regulated at the transcriptional level. Since specific inhibitors of p38 MAP kinase completely blocked Tis11B induction, we conclude that expression of the Tis11B gene is regulated at least in part by this signaling pathway which plays a central role in myogenesis. Induction of Tis11B expression was also observed in primary myoblasts isolated from two different mouse strains, indicating physiological relevance of our results. In addition, TIS11B might also be an important player during myogenic differentiation and regeneration in vivo, as we detected a marked decrease in expression in several muscle tissues of the dystrophic mdx mouse, a model for continuous muscle degeneration and regeneration. These data suggest that TIS11B is an important regulator of myogenesis.