Literature citations

AKINbetagamma contributes to SnRK1 heterotrimeric complexes and interacts with two proteins implicated in plant pathogen resistance through its KIS/GBD sequence.

The sucrose nonfermenting-1 protein kinase (SNF1)/AMP-activated protein kinase subfamily plays a central role in metabolic responses to nutritional and environmental stresses. In yeast (Saccharomyces cerevisiae) and mammals, the beta- and gamma-noncatalytic subunits are implicated in substrate specificity and subcellular localization, respectively, and regulation of the kinase activity. The atypical betagamma-subunit has been previously described in maize (Zea mays), presenting at its N-terminal end a sequence related to the KIS (kinase interacting sequence) domain specific to the beta-subunits (Lumbreras et al., 2001). The existence of two components, SNF1-related protein kinase (SnRK1) complexes containing the betagamma-subunit and one SnRK1 kinase, had been proposed. In this work, we show that, despite its unusual features, the Arabidopsis (Arabidopsis thaliana) homolog AKINbetagamma clearly interacts with AKINbeta-subunits in vitro and in vivo, suggesting its involvement in heterotrimeric complexes located in both cytoplasm and nucleus. Unexpectedly, a transcriptional analysis of AKINbetagamma gene expression highlighted the implication of alternative splicing mechanisms in the regulation of AKINbetagamma expression. A two-hybrid screen performed with AKINbetagamma as bait, together with in planta bimolecular fluorescence complementation experiments, suggests the existence of interactions in the cytosol between AKINbetagamma and two leucine-rich repeats related to pathogen resistance proteins. Interestingly, this interaction occurs through the truncated KIS domain that corresponds exactly to a GBD (glycogen-binding domain) recently described in mammals and yeast. A phylogenetic study suggests that AKINbetagamma-related proteins are restricted to the plant kingdom. Altogether, these data suggest the existence of plant-specific SnRK1 trimeric complexes putatively involved in a plant-specific function such as plant-pathogen interactions.

Related UniProtKB entries

Browse all 11 entries
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
FeedbackHelp