Nerve growth factor regulates adrenergic expression.
The mechanism by which nerve growth factor (NGF) regulates adrenergic expression was examined in PC-12 cells transfected with a rat phenylethanolamine N-methyl- transferase (PNMT) promoter-luciferase reporter gene construct pGL3RP893. NGF treatment increased PNMT promoter-driven luciferase activity in a dose- and time-dependent manner. Induction was attenuated by inhibition of the extracellular signal-regulated kinase mitogen-activated protein kinase (MAPK) pathway ( approximately 60%) but not by inhibition of the protein kinase A (PKA), protein kinase C, phosphoinositol kinase, or p38 MAPK pathways. Deletion PNMT promoter-luciferase reporter gene constructs showed that the NGF-responsive sequences lay within the proximal -392 base pairs (bp) of PNMT promoter, wherein binding elements for Egr-1 (-165 bp) and Sp1 (-48 bp) reside. Western analysis further showed that NGF increased nuclear levels of Egr-1, but not Sp1 or the catalytic subunit of PKA. Gel mobility shift assays showed increased potential for Egr-1, but not Sp1, protein-DNA binding complex formation. Mutation of either the Egr-1 or Sp1 binding sites in the PNMT promoter attenuated NGF activation. NGF, combined with pituitary adenylyl cyclase-activating protein (PACAP), another PNMT transcriptional activator, cooperatively stimulated PNMT promoter driven-luciferase activity beyond levels observed with either neurotrophin alone. Finally, post-transcriptional control seems to be another important mechanism by which neurotrophins regulate the adrenergic phenotype. NGF, PACAP, and a combination of the two stimulated both intron-retaining and intronless PNMT mRNA and PNMT protein, but to different extents.