Literature citations

A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature.

Two different mutants of Arabidopsis thaliana deficient in chloroplast membrane lipid polyunsaturation were indistinguishable in appearance from the wild-type when grown at 22 degrees C. By contrast, leaf tissues of the mutants that developed during growth at 5 degrees C were chlorotic, whereas the wild type was not. This is the first direct evidence that chloroplast lipid polyunsaturation contributes to low-temperature fitness. Chloroplasts from mutant lines grown at 5 degrees C were much smaller than those of the wild-type, and the thylakoid membrane content was reduced by up to 70%. However, there was no discernible effect of low temperature on chloroplasts that developed prior to exposure to low temperatures. These and related observations suggest that the high degree of chloroplast membrane lipid polyunsaturation is required for some aspect of chloroplast biogenesis.

Related UniProtKB entry

Browse 1 entry
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
FeedbackHelp