Literature citations

Cell cycle control by daf-21/Hsp90 at the first meiotic prophase/metaphase boundary during oogenesis in Caenorhabditis elegans.

DAF-21, a Caenorhabditis elegans homologue of Hsp90, is expressed primarily in germline cells. Although mutations in the daf-21 gene affect animal fertility, its cellular roles have remained elusive. To phenocopy daf-21 mutations, we impaired the daf-21 function by RNA interference (RNAi), and found that oocytes skipped the diakinesis arrest and displayed a defective diakinesis arrest, which led to the production of endomitotic oocytes with polyploid chromosomes (Emo phenotype). The same Emo phenotype was also observed with RNAi against wee-1.3. To identify a cause for Emo, we examined the CDK-1 (Cdc2) phosphorylation status in Emo animals, since CDK-1 is a key regulator of the prophase/metaphase transition and is kept inactivated by WEE-1.3 kinase during prophase. We immunostained both daf-21(RNAi) and wee-1.3(RNAi) animals with anti- phosphorylated-CDK-1 antibody and observed no detectable phosphates on CDK-1 in either of the animals. We also examined WEE-1.3 expression in daf-21(RNAi) and found a significant reduction of WEE-1.3. These results indicate that CDK-1 was not phosphorylated in either daf-21(RNAi) or wee-1.3(RNAi) animals, and suggest that daf-21 was necessary for producing functional WEE-1.3. Thus, all together, we propose that DAF-21 indirectly regulates the meiotic prophase/metaphase transition during oocyte development by ensuring the normal function of WEE-1.3.

Related UniProtKB entries

Browse all 2 entries
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
FeedbackHelp