Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Functional regulation of the opposing (p)ppGpp synthetase/hydrolase activities of RelMtb from Mycobacterium tuberculosis.

Avarbock A., Avarbock D., Teh J.S., Buckstein M., Wang Z.M., Rubin H.

The dual-function Rel(Mtb) protein from Mycobacterium tuberculosis catalyzes both the synthesis and hydrolysis of (p)ppGpp, the effector of the stringent response. In our previous work [Avarbock, D., Avarbock, A., and Rubin, H. (2000) Biochemistry 39, 11640], we presented evidence that the Rel(Mtb) protein might catalyze its two opposing reactions at distinct active sites. In the study presented here, we purified and characterized fragments of the 738-amino acid Rel(Mtb) protein and confirmed the hypothesis that amino acid fragment 1-394 contains both synthesis and hydrolysis activities, amino acid fragment 87-394 contains only (p)ppGpp synthesis activity, and amino acid fragment 1-181 contains only (p)ppGpp hydrolysis activity. Mutation of specific residues within fragment 1-394 results in the loss of synthetic activity and retention of hydrolysis (G241E and H344Y) or loss of hydrolytic activity with retention of synthesis (H80A and D81A). The C-terminally cleaved Rel(Mtb) fragment proteins have basal activities similar to that of full-length Rel(Mtb), but are no longer regulated by the previously described Rel(Mtb) activating complex (RAC). Residues within the C-terminus of Rel(Mtb) (D632A and C633A) are shown to have a role in interaction with the RAC. Additionally, size exclusion chromatography indicates Rel(Mtb) forms trimers and removal of the C-terminus results in monomers. The C-terminal deletion, 1-394, which exists as a mixture of monomers and trimers, will dissociate from the trimer state upon the addition of substrate. Furthermore, the trimer state of fragment 1-394 appears to be a catalytically less efficient state than the monomer state.

Biochemistry 44:9913-9923(2005) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again