Evolution of a pathway to novel long-chain carotenoids.
Using methods of laboratory evolution to force the C(30) carotenoid synthase CrtM to function as a C(40) synthase, followed by further mutagenesis at functionally important amino acid residues, we have discovered that synthase specificity is controlled at the second (rearrangement) step of the two-step reaction. We used this information to engineer CrtM variants that can synthesize previously unknown C(45) and C(50) carotenoid backbones (mono- and diisopentenylphytoenes) from the appropriate isoprenyldiphosphate precursors. With this ability to produce new backbones in Escherichia coli comes the potential to generate whole series of novel carotenoids by using carotenoid- modifying enzymes, including desaturases, cyclases, hydroxylases, and dioxygenases, from naturally occurring pathways.