Two previously undescribed members of the mouse CPEB family of genes and their inducible expression in the principal cell layers of the hippocampus.
Cytoplasmic polyadenylation element-binding (CPEB) proteins control polyadenylation-induced translation in early development. Studies in oocytes led to the delineation of Xenopus CPEB, the first member of the family to be identified, and its mouse homologue mCPEB-1. Recently, a second mouse family member, mCPEB-2, has been described in germ cells. Increasing evidence also implicates CPEB proteins as being important in the hippocampus, where these proteins are thought to regulate local protein synthesis and synaptic plasticity. We therefore carried out a systematic screen for CPEB genes in the mouse brain and report two previously undescribed gene family members: mCPEB-3 and -4. We next examined the expression of all four genes in the hippocampus and found that mCPEB-1, -2, and -4 transcripts are expressed in the principal cell layer in the CA3 and CA1 region and in the dentate gyrus of the hippocampus. mCPEB-3 was barely expressed in naïve animals but together with mCPEB-4 was strongly up-regulated after injection of kainate to initiate seizure activity. Whereas mCPEB-1 is regulated by the Aurora kinase, mCPEB-2, -3, and -4 do not contain Aurora kinase phosphorylation sites. However, alternative splice isoforms of mCPEB-2, -3, and -4 encode the so-called B region with phosphorylation sites for cAMP-dependent protein kinase, calcium/calmodulin- dependent protein kinase II, and S6 kinase. Only isoforms that encode the B region were expressed in the principal cell layer. Coexpression of mCPEB-1 and the B region-containing splice isoforms suggests that a variety of different signaling pathways can recruit CPEB activity in hippocampal neurons.