Literature citations

A pea antisense gene for the chloroplast stromal processing peptidase yields seedling lethals in Arabidopsis: survivors show defective GFP import in vivo.

The stromal processing peptidase (SPP) of chloroplasts is a metalloendopeptidase that cleaves in vitro a broad range of precursor substrates. Here, we have investigated SPP's role in vivo. Two pea cDNA antisense constructs encoding either full-length SPP (AS4.0) or its N-terminal half (AS2.2) are introduced into Arabidopsis, which contains one gene for SPP that codes for one isoform. Our analyses show that AS4.0 produces a strong mutant phenotype, with a large percentage of the plants dying as seedling lethals. Surviving plants exhibited slower shoot and root growth, and grossly aberrant leaf morphology. Green and white sectoring, and purple pigmentation was observed. In cells where chloroplasts could be identified, they were fewer in number by at least 40%, thylakoids were not fully developed, and starch granules accumulated. The phenotype produced by AS2.2 was less severe. Using green fluorescent protein (GFP) fused to a transit peptide as a reporter, we examined import into chloroplasts in vivo. In the Arabidopsis antisense lines, GFP was located primarily in the cytosol, indicating that an early step in the import pathway was impeded. In a tobacco AS14 line expressing AS2.2, GFP was located in the cytosol, on the envelope, and in the stroma. The three patterns were observed in different cells, suggesting that the import capacity of individual cells was not the same. Our in vivo studies demonstrate that SPP is essential for chloroplast biogenesis and plant survival. SPP does not act independently in the stroma, but its activity influences earlier steps in the import pathway.

Related UniProtKB entry

Browse 1 entry
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
FeedbackHelp