Literature citations

The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation.

In the previous study, we demonstrated that the nuclear isoform of T-cell protein-tyrosine phosphatase (TC-PTP) dephosphorylated and deactivated signal transducer and activator of transcription 5a (STAT5a) and STAT5b, thereby negatively regulating prolactin (PRL)-mediated signaling pathway. In this study, we examined the involvement of the nuclear isoform of TC-PTP in interleukin-6 (IL-6)-mediated signaling pathway. IL-6 is a multifunctional cytokine that plays important roles in the immune system, hematopoiesis, and acute phase reactions, and has also implicated in IL-6-related diseases. Here, we demonstrate that IL- 6-induced tyrosine-phosphorylation and activation of STAT3 were suppressed by overexpression of the nuclear isoform of TC-PTP in 293T cells. Tyrosine- phosphorylated STAT3 directly interacted with a substrate-trapping mutant of TC- PTP. Furthermore, retrovirus-mediated overexpression of the nuclear isoform of TC-PTP suppressed the IL-6-induced growth arrest of myeloid leukemia M1 cells. Endogenous TC-PTP complexed with STAT3 in the nucleus of M1 cells. These results strongly suggest that the nuclear isoform of TC-PTP may serve as a negative regulator of IL-6-mediated signaling pathway.

Related UniProtKB entries

Browse all 20 entries
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
FeedbackHelp