Literature citations

Mutation processes at the protein level: is Lamarck back?

The experimental evidence accumulated for the last half of the century clearly suggests that inherited variation is not restricted to the changes in genomic sequences. The prion model, originally based on unusual transmission of certain neurodegenerative diseases in mammals, provides a molecular mechanism for the template-like reproduction of alternative protein conformations. Recent data extend this model to protein-based genetic elements in yeast and other fungi. Reproduction and transmission of yeast protein-based genetic elements is controlled by the "prion replication" machinery of the cell, composed of the protein helpers responsible for the processes of assembly and disassembly of protein structures and multiprotein complexes. Among these, the stress-related chaperones of Hsp100 and Hsp70 groups play an important role. Alterations of levels or activity of these proteins result in "mutator" or "antimutator" affects in regard to protein-based genetic elements. "Protein mutagens" have also been identified that affect formation and/or propagation of the alternative protein conformations. Prion-forming abilities appear to be conserved in evolution, despite the divergence of the corresponding amino acid sequences. Moreover, a wide variety of proteins of different origins appear to possess the ability to form amyloid-like aggregates, that in certain conditions might potentially result in prion-like switches. This suggests a possible mechanism for the inheritance of acquired traits, postulated in the Lamarckian theory of evolution. The prion model also puts in doubt the notion that cloned animals are genetically identical to their genome donors, and suggests that genome sequence would not provide a complete information about the genetic makeup of an organism.

Related UniProtKB entries

Browse all 14 entries
We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.
FeedbackHelp