Developmental and cell biological functions of the Drosophila DEAD-box protein abstrakt.
BackgroundDEAD-box proteins are a large family of proteins found in bacteria, plants and animals, but only few have been analysed functionally. They are involved in the regulation of various aspects of RNA processing and metabolism, including splicing, transport and translation. The study of their function in multicellular organisms has been restricted to a few special cases, such as the Vasa protein in the fruit fly Drosophila.ResultsWe show that abstrakt, a gene originally identified genetically by its effect on axon outgrowth and fasciculation of the Bolwig nerve, encodes a new Drosophila DEAD- box protein of which the closest homologue is a human gene of unknown function. Using temperature-sensitive alleles to assay its function, we found that abstrakt is essential for survival at all stages throughout the life cycle of the fly. Mutants show specific defects in many developmental processes, including cell-shape changes, localisation of RNA and apoptosis.ConclusionsAbstrakt is not globally required for RNA splicing, transport, subcellular localisation or translation. Nevertheless, there is a widespread requirement for Abstrakt during post-transcriptional gene expression. Abstrakt must affect processing of specific subsets of RNAs, suggesting that differential post-translational control during development is more common than previously suspected.