Extracellular vesicles derived from cervical cancer cells carrying MCM3AP- AS1 promote angiogenesis and tumor growth in cervical cancer via the miR- 93/p21 axis.
Tumor cells can promote angiogenesis by secreting extracellular vesicles (EVs). Meanwhile, tumor-derived EVs can carry long non-coding RNAs to activate pro- angiogenic signaling in endothelial cells. Here, we investigated the role of long non-coding RNA MCM3AP-AS1 carried by cervical cancer (CC) cell-derived EVs in the angiogenesis and the resultant tumor growth in CC, as well as the potential molecular mechanisms. LncRNAs significantly expressed in CC cell- derived EVs and CC were screened, followed by prediction of downstream target genes. EVs were isolated from HcerEpic and CaSki cell supernatants, followed by identification. The expression of MCM3AP-AS1 in CC was analyzed and its interaction with miR-93-p21 was confirmed. Following co-culture system, the role of MCM3AP-AS1 carried by EVs in HUVEC angiogenic ability, CC cell invasion and migration in vitro along with angiogenesis and tumorigenicity in vivo was assayed. MCM3AP-AS1 was overexpressed in CC cell-derived EVs as well as in CC tissues and cell lines. Cervical cancer cell-derived EVs could transfer MCM3AP- AS1 into HUVECs where MCM3AP-AS1 competitively bound to miR-93 and upregulate the expression of the miR-93 target p21 gene. Thus, MCM3AP-AS1 promoted angiogenesis of HUVECs. In the similar manner, MCM3AP-AS1 enhanced CC cell malignant properties. In nude mice, EVs-MCM3AP-AS1 induced angiogenesis and tumor growth. Overall, this study reveals that CC cell-derived EVs may transport MCM3AP-AS1 to promote angiogenesis and tumor growth in CC.